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1. Introduction  
In this project, we implemented a 2D Finite Volume Method (FVM) solver to simulate 
supersonic flow through an engine inlet. The solver is first-order and utilizes an adaptive 
approach where the mesh was refined between successive iterations. The 2D compressible 
Euler equations (see below) were used to govern the flow.  
 

 
 

Specifically, by using an adaptive approach, a goal of this project was to observe and resolve 
the complex shock structure within the engine.   

  
2. Problem Setup and Geometry 
Figure 1 shows the physical setup and computational boundary conditions of the problem. 
Notably, the domain is comprised of four different boundaries: a supersonic inflow, a 
supersonic outflow, and engine exit, and an engine wall (adiabatic).   
 

 
Figure 1 shows the geometry and potential flow solution of the domain 



 
A freestream condition was given to us to us to serve as the inflow condition of our domain. 
In addition, we were asked to apply our solver against several angles of attack, seen below.   
 

 

 
 
Additionally, we were initially provided with a baseline mesh of the solution. This mesh can 
be seen below in Figure 2. The purpose of this mesh was to serve as an initial guess to 
overlay onto further adaptive iterations.  
 

 
Figure 2 shows the baseline mesh and geometry 

 
 
 
 
 
 
 
 
 
 
 
 
 



3. Numerical Method and Discretization  
For this project, a First-Order FVM was implemented across the domain to solve for the flow 
throughout the engine. Specifically, a Forward Euler method with local time-stepping 
scheme is used to drive the solution to a steady state. The overall update equation for each 
cell in the domain can be seen below.  

 
Here we see that the update is comprised of two components: A Flux Residual 𝑹, and a 
scalar value of 𝚫𝒕/𝑨. For a triangular cell, as used in the discretized domain, the flux residual 
for a cell can be calculated as a sum of the state-fluxes across each side of the element 
(formula seen below). The specific formula of the state-flux will be described in a later 
section. 

 
 
 The scalar value of 𝚫𝒕/𝑨 can be found by relating it to the CFL number of for the cell. The 
formula for calculating it is seen below. 
 

 
 

Here, the denominator is again a sum across the three edges of a single element, with 𝒔 
corresponding to the maximum characteristic speed across an edge, and 𝚫𝒍 corresponding to 
the side length of the edge. With this approach, the value of 𝚫𝒕/𝑨 will be different for each 
cell. Finally, we also define a new value to asses convergence: the L1 norm of the residual 
vector as defined below.  

 
When this value has reached a value below 10*+, we can deem the solution as converged.  

 
4. Adaptation  
As the given mesh is somewhat coarse, we are also tasked with implementing a mesh 
adaptation algorithm. Specifically, this algorithm will be required to flag edges that have a 
sufficiently high jump in Mach number for refinement. These flagged edges will then 
transform the original element into a new subset of multiple elements. This should help 
resolve certain features of the flow, such as shocks and expansion waves.  
 
Specifically, the algorithm works by first determining the error across each edge according to 
the following formulas below, where 𝑀- is the cell Mach number, and ℎ/ is the edge length.   



 

 
 

Once all errors have been calculated, the top 3% of the edges with the highest error are then 
flagged for refinement. Furthermore, to smooth out these refinements, any cells that have one 
edge flagged will automatically have all of their edges flagged. This results in the flagged 
elements falling into 3 categories, as seen below in Figure 3.  
 

 
 

Figure 3 shows the 3 categories of refined elements from the adaptation algorithm 
 

To help with convergence, the new elements within a cell will be initialized with the same 
condition as the original, larger element.  

 
 
5. Questions and Tasks  
 
5.1  Question 1 – Roe Flux  
As stated in Section 3 above, the flux residual is a function of an implemented state-flux that 
is calculated across all sides of a cell. For this project, we implemented a Roe Flux. The 
implementation of this function can be seen in the MATLAB file “roe_flux.m”. This 
function intakes the state on two bordering elements (left and right), as well as the normal 
vector pointing from the left element to the right. The overall output of this function is the 
“Roe Flux” over the edge of the elements. The formula for it can be seen below. 
 

 



 
The function works by first calculating the state-flux 𝑭𝑳,𝑹 of each state. Next it finds the 
“Roe-Averaged State” – a combination of the left and right states. Using the “Roe-Averaged 
State”, characteristics of the state are backed out, such as the speed of sound, velocity, and 
enthalpy. Using these characteristics, the coefficients 𝐂𝟏, 𝐂𝟐 can be computed, and thus, so 
can the full expression of 𝑭6. As a side note, an entropy fix was implemented within the Roe 
Flux function to protect against two elements with too similar of speeds. The fix is described 
with the expression below.  
 

 
 
To check that the function was implemented correctly, test cases were passed into the Roe 
Flux function.  
 

1. 𝑭(𝑢:, 𝑢;, 𝑛=⃗ ) = 	−𝑭(𝑢;, 𝑢:, −𝑛=⃗ )	 
a. This check determines whether or not that flipping the direction results in the 

opposite flux value. To test this, each case was run, and the output of the Roe 
Flux function was compared. The output, as seen below, passes this test 

 

 
 

2. 𝑭(𝑢:, 𝑢:, 𝑛=⃗ ) = 	𝑭==⃗ (𝑢:) ∙ 𝑛=⃗ 	 
a. This test checks the consistency of the Roe Flux. To test this, a test state was 

passed into the flux function, and the expression above was evaluated. The 
output calculations, as seen below, passes the test. The variable FL_dotted is 
computed as 𝑭==⃗ (𝑢:) ∙ 𝑛=⃗  

 



 
 

3. States with a supersonic normal velocity should return the analytical flux 𝑭==⃗ (𝑢) from 
the upwind state.  

a. This test ensures that within a supersonic flow, information does not travel 
upstream.  To test this, supersonic inlet condition was passed as both an 
upwind and downwind state. As seen below, the final output flux is equal to 
the analytical flux of the upwind state, conforming that this condition is 
satisfied.  

 

 



 
5.2  Question 2 – Finite Volume Solver  
To solve the flow over the given domain, the MATLAB script “p2_FVM.m” was created to 
apply a finite volume method. The output of the script is a final array of the state values of 
the mesh in each element. An overview of the steps the script follows can be found below  
 

1. A mesh file (specified as either the given mesh or a user-created restart file) is read. 
a. If the mesh is the given mesh (mesh0.gri), freestream conditions are 

initialized.  
b. Else, the conditions from the previous run are used to initialize the mesh.  
c. Call “edgehash.m” to create the IE and BE arrays.  

2. The boundary edges, BE, are looped over 
a. The MATLAB version of the mesh reader does not provide the boundary type 

in BE. For each boundary edge in BE, the corresponding edge nodes are found 
within mesh.B.  

b. A vector of size [Length of BE, 1] is created with each entry being a scaler 
number 1-4. Respectively, these numbers correspond to the boundary type: 
Engine, Exit, Outflow, Inflow.  

c. This vector is tacked on to BE. This allows for the BE array to contain 
information regarding the boundary type of each boundary edge.  

3. Basic variables for the time-stepping section are initialized. These include the 
residuals, ATPR values, and residual tolerance.  

4. TIMESTEPPING SECTION - While the residual norm is greater than the tolerance,  
a. Loop over the interior edges, IE  

i. Define the normal as pointing from elem1 to elem2 in IE 
ii. Calculate the Roe Flux across the edge and add it to that elements 

residual state vector  
b. Loop over the boundary edges, BE 

i. Define the normal as pointing out from elem1 in BE 
ii. Determine the boundary state (Engine, exit, outflow, inflow) using the 

added information in BE and calculate the corresponding Roe Flux. 
c. Update the state at each element and calculate the ATPR 

5. Plot mesh and field plots 
6. Save a restart file that contains the mesh struct, as well as the new state u.  

 
To assist this script, the following functions were created: “post_process.m”, “p_t.m”, 
“freestream.m”. Respectively, these serve the purpose of plotting the final fields of Mach 
and total pressure, determining the total pressure within an element, and returning the 
constant freestream condition, when called.  

 
5.3  Question 3 Running the Finite Volume Solver 
The script “p2_FVM.m”, as described in the previous section, was run at an angle of attack 
of 𝜶 = 𝟏°.  The initial condition that was specified for all elements was the freestream 
condition. At the end of the simulation, the outputs of “p2_FVM.m” included a convergence 
plot of the simulation’s residuals, a converge plot of the calculated ATPR, and two fields 
plots of the Mach number and total pressure. These plots can be seen below.  



 
Figure 4 shows the Mach number field plot of the coarse mesh for 𝛼 = 1°.   

 
Figure 5 shows the Total Pressure field plot of the coarse mesh for 𝛼 = 1°.   

 



 
 

Figure 6 shows the ATPR convergence plot of the coarse mesh for 𝛼 = 1°.   

 
 

Figure 7 shows the residual convergence plot of the coarse mesh for 𝛼 = 1°.   
 
 

As seen above, the final field plots have considerable tessellations due the coarseness of the 
mesh. This should disappear as the mesh is further refined.  
 
 
 
 



5.4  Question 4 
Next, a mesh adaptation algorithm was implemented in the script “adapt.m”. The is script 
has the effect of refining certain elements within the mesh based off of the change in Mach 
number jumps, as described in Section 4. A brief summary of the script can be seen below.   
 

1. Read in the restart file from any previous runs of “p2_FVM.m” calls. This will 
provide the adaption algorithm with a working mesh.  

2. Create a variable “edge_map”. This is a [Number of elements x 6] sized array. Each 
row corresponds to an element. The first three rows correspond to the edge numbers 
that are associated with that element. The next three rows are Booleans that state 
weather or not the edge in question is flagged for refinement.  

3. Loop over the internal edges IE 
a. Assign the edge number to an element on “edge_map” and calculate the error 

across the edge.  
4. Loop over the boundary edges BE 

a. Assign the edge number to an element on “edge_map” and calculate the error 
across the edge.  

5. Knowing the error across each edge, flag the top 3% of the errors for refinement in 
accordance with Section 4.  

6. Loop over the rows of edge_map (loop over the elements)  
a. For every edge on each element, record the number of edges that need to be 

refined. 
i. If one edge needs to be refined, this element will be split into two 

separate elements. Modify mesh.Elem to incorporate the new node 
triplets, and mesh.B.nodes to contain the new coordinates.  

ii. If two edges need to be refined, this element will be split into three 
separate elements. Modify mesh.Elem to incorporate the new node 
triplets, and mesh.B.nodes to contain the new coordinates.  

iii. If all three edges needs to be refined, this element will be split into 
four separate elements. Modify mesh.Elem to incorporate the new 
node triplets, and mesh.B.nodes to contain the new coordinates.  

b. Assign the old elemental state to the newly created elements  
7. Overwrite the restart file for future use in “p2_FVM.m”  

 
 

With the mesh adaptation algorithm in place, it was applied to the previous coarse simulation 
at 𝜶 = 𝟏° five times. During this sequence, plots of the adapted meshes were created. These 
can be seen below in Figures 8-13. 

 



 
Figure 8 shows the original coarse mesh for 𝛼 = 1°.   

 

 



Figure 9 shows the first adaptive mesh for 𝛼 = 1°.   

 
Figure 10 shows the second adaptive mesh for 𝛼 = 1°.   

 
Figure 11 shows the third adaptive mesh for 𝛼 = 1°.   



 

 
 

Figure 12 shows the fourth adaptive mesh for 𝛼 = 1°.   

 
Figure 13 shows the fifth adaptive mesh for 𝛼 = 1°.   

 



A plot of the convergence of the ATPR value was also calculated. This is seen below in 
Figure 14.  

 
 

Figure 14 shows the convergence of ATPR against time step iterations for 𝛼 = 1°. 
 
 

As seen above, as the number of elements increased through more adaptive iterations, the 
ATPR of the engine outlet converged upon a value nearing 0.91. Note that the axes of Figure 
14 above are not equal, therefore it looks as if the behavior of the ATPR against the number 
of elements is steeper than in reality. Additionally, field plots of Mach number, Total 
Pressure, and ATPR values were recorded. Plots of these values can be seen below in 
Figures 15-16. 

 



 
Figure 15 shows the finest Mach field plot for 𝛼 = 1°. 

 

 
Figure 16 shows the finest Total Pressure field plot for 𝛼 = 1°. 



 
One thing to note is the locations at which the mesh adaptations were taking place. As 
discussed in Section 4, these locations were determined by calculating the magnitude at 
which the Mach number changes. In comparing these locations in Figures 8-13 to the Mach 
field plots, it’s interesting to see that these locations correspond to within the engine inlet – 
specifically across locations of the shock train and expansion waves. Mostly, this occurs in 
locations where the geometry has a sharp angle. It makes sense that the value of ATPR is 
converging with more refined meshes, as the shocks, and their effects on the downstream air, 
are being better resolved.  

 
5.5  Question 5 
Finally, adaptive iterations were run over the mesh for a sweep of alphas, where 𝛼 =
[0.5, 1, 1.5, 2, 2.5, 3] degrees. For each value of alpha, it was chosen to run the adaptive 
algorithm six times. Figures 17 shows the final converged value of ATPR for each alpha.  
 

 
Figure 17 shows the converged ATPR after 6 adaptions for 𝛼 = [0.5, 1, 1.5, 2, 2.5, 3°] 

 
 

 
First of all, it is important to note that the last evaluation at AoA = 3 resulted in a ATPR that 
was higher than expected. While I am not completely sure why this is the case, I do believe it 
has something do to with the resolution of the mesh – specifically, I belive that at a AoA of 3 
degrees, 6 adaptive iterations may not have been enough to properly resolve the shocks and 
expansion waves. If I had more time, I would like to run each case to 8 adaptive iterations 
and re-make this plot. 
 
Globally, however, in viewing this plot is that there is a global trend in how the ATPR is 
increasing with increasing angle of attack. While I’m not sure on the physical reasoning 
behind why this would increase, I know that a higher value of ATPR is desirable – therefore 



these results support that if this inlet were to be used within this range of alphas, it should be 
used at the peak: alphas between 2.5 and 3 degrees. These high AoA’s will result in less of a 
loss of total pressure throughout the inlet.  
 
Additionally, this conclusion is supported by the field plots. Figures 18 and 19 compare the 
total pressure field of the inlet against the lowest, and highest, AoA. Both plots were created 
using a 6-times adapted mesh.  

 
 

 
Figure 18 shows the total pressure after 6 adaptions for 𝛼 = 0.5° 

 



 
Figure 18 shows the total pressure after 6 adaptions for 𝛼 = 3° 

 
 

Notably, if you compare these plots, you see that near the engine exit, the second case with 
AoA = 3 degrees has a much higher total pressure at the boundary compared to the AoA = 
0.5 degree case. This supplements the previous claim that the higher AoA resulted in a higher 
ATPR, since the ATPR is a simple integral of the total pressure across the boundary. Again, 
although I am unsure of the direct effects, another aspect to consider is that the shocks 
present in the AoA = 3 degree case are much stronger, as the flow has to turn a greater angle 
due to the angle of attack.  

 
4. Conclusion 
In this project, we implemented a 2D Finite Volume Method (FVM) solver to simulate 
supersonic flow through an engine inlet. The solver is first-order and utilizes an adaptive 
approach where the mesh was refined between successive iterations. The 2D compressible 
Euler Equations served as the governing equations of our state. Specifically, it uses a first-
order Euler time-stepping scheme and calculates a Roe Flux between its elements.  
 
Additionally, a mesh adaptation algorithm was implemented that refined locations within the 
domain that contained large changes in Mach Number. By determining the error across each 
edge, this algorithm flags certain edges for further refinement – increasing the total number 
of elements within the mesh.  
 
Implementing these two aspects allowed us to converge upon a reasonably fine mesh and 
resolve the geometry and locations of the shockwaves present within the body. We see that a 



shock train develops within, and downstream of the mouth of the engine inlet. Additionally, 
we see that the total pressure of the flow decreases as it crosses the numerous shocks. Finally, 
in varying our angle of attack, we found that the Average Total Pressure Recovery across the 
engine exit increases.  

 
 


